Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 14: 1131985, 2023.
Article in English | MEDLINE | ID: covidwho-20230927

ABSTRACT

The mRNA vaccines (RVs) can reduce the severity and mortality of severe acute respiratory syndrome coronavirus (SARS-CoV-2). However, almost only the inactivated vaccines (IVs) but no RVs had been used in mainland China until most recently, and the relaxing of its anti-pandemic strategies in December 2022 increased concerns about new outbreaks. In comparison, many of the citizens in Macao Special Administrative Region of China received three doses of IV (3IV) or RV (3RV), or 2 doses of IV plus one booster of RV (2IV+1RV). By the end of 2022, we recruited 147 participants with various vaccinations in Macao and detected antibodies (Abs) against the spike (S) protein and nucleocapsid (N) protein of the virus as well as neutralizing antibodies (NAb) in their serum. We observed that the level of anti-S Ab or NAb was similarly high with both 3RV and 2IV+1RV but lower with 3IV. In contrast, the level of anti-N Ab was the highest with 3IV like that in convalescents, intermediate with 2IV+1RV, and the lowest with 3RV. Whereas no significant differences in the basal levels of cytokines related to T-cell activation were observed among the various vaccination groups before and after the boosters. No vaccinees reported severe adverse events. Since Macao took one of the most stringent non-pharmaceutical interventions in the world, this study possesses much higher confidence in the vaccination results than many other studies from highly infected regions. Our findings suggest that the heterologous vaccination 2IV+1RV outperforms the homologous vaccinations 3IV and 3RV as it induces not only anti-S Ab (to the level as with 3RV) but also anti-N antibodies (via the IV). It combines the advantages of both RV (to block the viral entry) and IV (to also intervene the subsequent pathological processes such as intracellular viral replication and interference with the signal transduction and hence the biological functions of host cells).


Subject(s)
COVID-19 , Nucleocapsid Proteins , Humans , Macau , SARS-CoV-2 , Vaccines, Inactivated , COVID-19/prevention & control , Antibodies, Neutralizing , mRNA Vaccines
2.
Int J Biol Sci ; 18(12): 4795-4808, 2022.
Article in English | MEDLINE | ID: covidwho-1954695

ABSTRACT

COVID-19 is hopefully approaching its end in many countries as herd immunity develops and weaker strains of SARS-CoV-2 dominate. However, a new concern occurs over the long-term effects of COVID-19, collectively called "Long COVID", as some symptoms of the nervous system last even after patients recover from COVID-19. This review focuses on studies of anosmia, i.e., impairment of smell, which is the most common sensory defect during the disease course and is caused by olfactory dysfunctions. It remains mysterious how the olfactory functions are affected since the virus can't invade olfactory receptor neurons. We describe several leading hypotheses about the mystery in hope to provide insights into the pathophysiology and treatment strategies for anosmia.


Subject(s)
Anosmia , COVID-19 , Anosmia/diagnosis , Anosmia/virology , COVID-19/complications , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
3.
Int J Biol Sci ; 17(6): 1446-1460, 2021.
Article in English | MEDLINE | ID: covidwho-1206437

ABSTRACT

The Coronavirus disease-19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus -2 (SARS-CoV-2), has impacted human lives in the most profound ways with millions of infections and deaths. Scientists and pharmaceutical companies have been in race to produce vaccines against SARS-CoV-2. Vaccine generation usually demands years of developing and testing for efficacy and safety. However, it only took less than one year to generate two mRNA vaccines from their development to deployment. The rapid production time, cost-effectiveness, versatility in vaccine design, and clinically proven ability to induce cellular and humoral immune response have crowned mRNA vaccines with spotlights as most promising vaccine candidates in the fight against the pandemic. In this review, we discuss the general principles of mRNA vaccine design and working mechanisms of the vaccines, and provide an up-to-date summary of pre-clinical and clinical trials on seven anti-COVID-19 mRNA candidate vaccines, with the focus on the two mRNA vaccines already licensed for vaccination. In addition, we highlight the key strategies in designing mRNA vaccines to maximize the expression of immunogens and avoid intrinsic innate immune response. We also provide some perspective for future vaccine development against COVID-19 and other pathogens.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , RNA, Messenger/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , Humans , Pandemics
4.
Int J Biol Sci ; 16(10): 1753-1766, 2020.
Article in English | MEDLINE | ID: covidwho-24917

ABSTRACT

The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Coronavirus Infections/transmission , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Pneumonia, Viral/transmission , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 , Chiroptera/virology , Cytokines/immunology , Disease Outbreaks , Humans , Immunization, Passive , Infectious Disease Incubation Period , Medicine, Chinese Traditional , Mental Health , Pandemics , Prognosis , Risk Factors , SARS-CoV-2 , Travel , Vaccination , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL